Dynamic Systems and Applications 23 (2014) 653-664 HYERS-ULAM STABILITY OF HIGHER-ORDER CAUCHY-EULER DYNAMIC EQUATIONS ON TIME SCALES
نویسندگان
چکیده
ABSTRACT. We extend a recent result on third and fourth-order Cauchy-Euler equations by establishing the Hyers-Ulam stability of higher-order linear non-homogeneous Cauchy-Euler dynamic equations on time scales. That is, if an approximate solution of a higher-order Cauchy-Euler equation exists, then there exists an exact solution to that dynamic equation that is close to the approximate one. We generalize this to all higher-order linear non-homogeneous factored dynamic equations with variable coefficients.
منابع مشابه
Hyers-Ulam Stability of Non-Linear Volterra Integro-Delay Dynamic System with Fractional Integrable Impulses on Time Scales
This manuscript presents Hyers-Ulam stability and Hyers--Ulam--Rassias stability results of non-linear Volterra integro--delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem is used for obtaining existence and uniqueness of solutions. By means of abstract Gr"{o}nwall lemma, Gr"{o}nwall's inequality on time scales, we establish Hyers-Ulam stabi...
متن کاملAn integrating factor approach to the Hyers-Ulam stability of a class of exact differential equations of second order
Using the integrating factor method, this paper deals with the Hyers-Ulam stability of a class of exact differential equations of second order. As a direct application of the main result, we also obtain the HyersUlam stability of a special class of Cauchy-Euler equations of second order. c ©2016 All rights reserved.
متن کاملUlam-Hyers stability of dynamic equations on time scales via Picard operators
In this paper we study the Ulam-Hyers stability of some linear and nonlinear dynamic equations and integral equations on time scales. We use both direct and operatorial methods and we propose a unified approach to Ulam-Hyers stability based on the theory of Picard operators (see [29] and[34]). Our results extend some recent results from [25],[26], [8], [14], [13] to dynamic equations and are mo...
متن کاملApproximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras
In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...
متن کاملAn Application of Ulam-Hyers Stability in DC Motors
Received Okt 2, 2014 Revised Nov 1, 2014 Accepted Nov 23, 2014 In this paper, a generalization to nonlinear systems is proposed and applied to the motordynamic, rotor model and stator model in DC motor equation. We argue that Ulam-Hyers stability concept is quite significant in design problems and in design analysis for the class of DC motor’s parameters. We prove the stability of nonlinear par...
متن کامل